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We predict and theoretically investigate the new coherent effect of nonlinear quantum optics—spatial propa-
gation of Rabi oscillations (Rabi waves) in one-dimensional quantum dot (QD) chain. QD chain is modeled by
the set of two-level quantum systems with tunnel coupling between neighboring QDs. The space propagation
of Rabi waves in the form of traveling waves and wave packets is considered. It is shown, that traveling Rabi
waves are quantum states of QD chain dressed by radiation. The dispersion characteristics of traveling Rabi
waves are investigated and their dependence on average number of photons in wave is demonstrated. The
propagation of Rabi wave packets is accompanied by the transfer of the inversion and quantum correlations
along the QD chain and by the transformation of quantum light statistics. The conditions of experimental
observability are analyzed. The effect is potentially useful for quantum computing and quantum informatics.
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I. INTRODUCTION

Rabi oscillations are periodical transitions of a two-level
quantum system between its stationary states under the ac-
tion of an oscillatory driving field, see, e.g. Refs. 1 and 2.
The phenomenon was theoretically predicted by Rabi on
nuclear spins in radio-frequency magnetic field® and was first
observed by Torrey.* Afterwards, Rabi oscillations were dis-
covered in various physical systems, such as electromagneti-
cally driven atoms’ (including the case of Rydberg atomic
states®), semiconductor quantum dots (QDs),” and different
types of solid-state qubits (superconducting charge qubits
based on Josephson junctions,®'? spin qubits,'! semiconduc-
tor charge qubits'?). In real physical systems the ideal picture
of Rabi effect, given by the Jaynes-Cummings model' can be
essentially modified by additional features, such as the time-
domain modulation of the field-matter coupling constant,'>14
the phonon-induced dephasing,'>!% and the local-field
effects.’1° New phenomena appear in Rabi oscillators with
broken inversion symmetry?? and in systems of two coupled
Rabi oscillators.?!-27

In spatially extensive samples with a large number of os-
cillators the propagation effects come into play. As a result,
the mechanism responsible for Rabi oscillations causes also
a number of nonstationary coherent optical phenomena, such
as optical nutation, photon echo, self-induced transparency,
etc.?® In low-dimensional systems the propagation effects
also take place. For example, the numerical modeling of the
coherent intersubband Rabi oscillations in a sample compris-
ing 80 AlGaAs/GaAs quantum wells* shows that the popu-
lation dynamics depends on the quantum well position in the
series. This result demonstrates strong radiative coupling be-
tween wells and, more generally, significant difference in the
picture of Rabi effect for single and multiple oscillators. An-
other aspects of such a difference, namely, the effects of
quantum interference and correlations between photons in
multiatom fluorescence, are demonstrated in Refs. 30 and 31
(on the example of atomic chains in nanofibers). From prac-
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tical point of view, the effect of Rabi oscillations is a key
ingredient for realization of binary logic and optical control
in quantum informatics and quantum computing.

The theoretical analysis of Rabi oscillations is highly di-
versified both in form and content. The common feature is
the impossibility of consideration of electromagnetic field
influence as a small perturbation. Different ways of descrip-
tion are used in the analysis of the model problem of Rabi
oscillations in a single two-level atom.! One such a way, the
probability amplitude method, consists in solving of the
Schrodinger equation for wave function |W), which is the
superposition of various atom-photon states. The second one
is the Heisenberg operator method which is based on the
analysis of the photonic and atomic operators time evolution.
And finally, the third way is the unitary time-evolution op-
erator technique. As is demonstrated in Ref. 1, all these
methods lead to identical solutions; the choice of the con-
crete one is determined by the convenience considerations.

Taking into account the quantum nature of the electro-
magnetic field has the special significance in the analysis of
Rabi oscillations in complex systems. Two different cases
can be marked out. The first one could be called
quasiclassical.”® In this case external field has classical na-
ture. However, the true field is supposed to be concordant
with the quantum motions of the particles. So, the field
should contain the contribution of the induced polarization,
which has a quantum nature. Another case is really quantum
and takes into consideration the photon structure of the elec-
tromagnetic field.! During the process of energy-level transi-
tions in the atom the photon structure of the field is also
transformed, therefore the atom-photon dynamics should be
considered self-consistently.

In this paper we build a theoretical model of a distributed
structure of coupled two-level systems exposed to the quan-
tum light. We predict a new physical effect: the spatial
propagation of Rabi oscillations in the form of traveling
waves and wave packets. The oscillations of the population
between levels in the isolated two-level system may be con-
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sidered as a manifestation of the energy exchange between
the system and photon. The critical issue when modeling the
strong electron-photon coupling in distributed quantum sys-
tem [for example, in one-dimensional (1D) QD chains] is the
particle movement (e.g., interdot electron tunneling) leading
to the quasimomentum exchange between charge carriers
and photons. The interplay of these exchange mechanisms
plays crucial role in the formation of spatial-temporal dy-
namics of Rabi oscillations in the QD chain. This mechanism
precisely specifies the appearance of propagation effect. Not
surprisingly, the presence of tunneling in this case cannot be
represented as a small perturbation of ideal Rabi dynamics
given by the model of isolated two-level system. It has a
significantly more complicated behavior which cannot be de-
scribed by means of any type of perturbation technique.
Thus, more rigorous approach is required for such analysis.
It is a sufficiently complicated task and it will be presented in
this paper.

There exist different ways of theoretical description of
complex quantum systems strongly interacted with quantum
light. Often in quantum optics an “all-matter” picture is em-
ployed, where the dynamics of electromagnetic field is inte-
grated out, for example, in the optical Bloch equations.’>
In Refs. 34 and 35 the light-matter interaction is treated in an
“all-light” picture (Lippmann-Schwinger equation approach).
As the theoretical approach we use the probability amplitude
method, generalized for the case of 1D chain.

The paper is organized as follows. In Sec. II, we develop
a theoretical model describing the QD chain—quantum light
interaction. We formulate a model Hamiltonian with the
separate terms accounting for the tunnel interdot coupling
and local-field interaction (Sec. IT A). Later on, we exploit
the Hamiltonian for the derivation of equations of motion,
describing dynamical properties of the system (Secs. II B
and II C). To make the paper self-contained, we present the
realistic ranges of variation for key QD parameters, used as
phenomenological ones in our formulation (Sec. II D). In
Sec. III we consider the traveling Rabi waves (dispersion
equations, eigenmode structure, dispersion curves proper-
ties). In Sec. IV we investigate the Rabi wave packets propa-
gation. The general solution of equation of motion is derived
in Sec. IV A. Section IV B presents the simple analytical
approximation of Rabi wave packet and qualitative analysis
of its spatial-temporal dynamics. Sections IV C and IV D
contain numerical results for different cases of initial quan-
tum statistics of light (coherent states, Fock qubit states,
vacuum Rabi waves). In Sec. V we consider the Rabi waves
in a classic light limit. In Sec. VI we analyze local-field
effect in the QD chain and identify the conditions leading to
the weak influence of the local fields on Rabi wave propaga-
tion. The space-time structure of electron-electron and
electron-photon correlators is considered in Sec. VII. The
main results of the work are formulated in Sec. VIII.

II. MODEL

A. Hamiltonian

Let the infinite periodical one-dimensional chain of iden-
tical QDs be aligned parallel to the x axis. Let |a,) and [b,) to
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FIG. 1. (Color online) (a) Schematic picture of the QD chain
interacting with single-mode electromagnetic field and (b) the en-
ergy levels diagram for pth QD.

be one-electron orbital wave functions on the pth QD in the
excited and ground states, respectively (Fig. 1).

Let the two neighboring QDs are coupled through the
electron tunneling,”’ such that only intraband tunnel transi-
tions are permitted. It means that the electron due to the
electron tunneling can go from state |ap) to state |apt1> and
from state |b,) to state |b,.) only. The transitions between
ground and excited states of different QDs are assumed to be
forbidden: {a,|b,)=0. In parallel with tunneling the inter-
dot dipole-dipole interactions (such as Forster and the radia-
tion field transfer) take place too. In given work we suppose
the tunneling to be predominant mechanism of interdot cou-
pling and neglect other ones. It will be shown below (see
Sec. II D) that this assumption can be justified for a wide
range of realistic parameter values.

Let the QD chain be exposed to a plane wave of quantum
light, which is characterized by electric field operator given
in the terms of creation and annihilation operators a*, @ by
E(x)=6(de™ +a*e™*). Here, §=+\2mhw/ Vye, V, is the nor-
malizing volume, e is the unit polarization vector, k
=(w/c)cos a is the axial wave number, a and w denote the
angle of incidence and angular frequency, respectively [an
exp(—iwt) time dependence is implicit].

The field dependence on transverse coordinates is negli-
gibly small because of electrical QD smallness. The case of
oblique incidence is of interest due to the possibility of axial
wave number tuning with variation in incidence angle « at
the constant frequency w. Another case of basic importance
is the interaction of the QD chain with strongly retarded
surface wave (the waves of a such type propagate along the
conductive carbon nanotubes,’® interfaces between noble
metal in the vicinity of plasmon resonance and dielectric
media,’” photonic crystal surfaces, etc).

In order to compare the theory of consideration and well-
known basic (single-mode) theories, such as Jaynes-
Cummings model' and Tavis-Cummings model,® we con-
centrate for simplicity on the single-mode approximation.
The generalization for a multimode case thereafter being
simple.

The Hamiltonian of the system in the rotating wave
approximation' reads

I:I=I:Id+lflf+fldf+flT+AfI. (1)

Here, H,;=(fiw,/ 2),6., corresponds to electron motion in
the absence of electron tunneling and QD-field interaction,
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o=la,)a,|- =hwd*d is the Hamiltonian of the
free electromagnetlc ﬁeld 3 The component of the Hamil-
tonian

de— ﬁgE (&+de’kp“ +G,d%e ~ikpa) (2)

describes the QD-field interaction, where g=—u&/f is the
interaction constant, p is the QD dipole moment. Let us
assume that all transition dipole moments in the chain are
characterized by real value and fixed orientation. The opera-
tor 6, =|a,)(b,| takes the pth QD in the ground state into the
excited state, whereas operator G, =|b,){a,| takes the pth QD
in the excited state into the ground state. The interdot elec-
tron tunneling can be described by the Hamiltonian

I:IT= - ﬁ§12 (|ap><ap+l| + |ap><ap—l|) - ﬁ§22 (|bp><bp+l|
p

P

+[b,)b,1) 3)

where &, , are the electron tunneling frequencies for the ex-

cited (&) and ground (&,) states of the QDs. The term AH
corresponds to the local-field effects originated from the
dipole-dipole electron-hole (e-h) intradot interaction;'’-!? in
the mean-field approximation this term is given by

AH = _II«(NIJ«)E (6,(6,) +6,(6,)). (4)

Here, N is the depolarization tensor [see Eq. (18) in Ref. 19]
and V is the volume of the single QD.

In the model of consideration any relaxation mechanisms
are omitted. The detailed analysis of the relaxation is not a
subject of this paper. The simplest estimation of the relax-
ation influence can be done in the relaxation-time approxi-
mation (7 approximation). It needs a simple standard modi-
fication of final solutions obtained in the absence of
relaxation (for more details see Secs. IV and V).

B. Equations of motion

The state vector of the “QD-chain+light” system may be
represented in terms of the eigenstates of isolated QDs and
photon number states as

W)= 2 [A,,(0la,n) +B,,0b,m]. (5
nop

Here, |b,,n)=|b,)®|n) and |a,,n)= |n) is
the light Fock state with n photons o and Ap, are the
unknown probability amplitudes. It should be noted that if
one omits last two terms in Hamiltonian (1), it goes into
well-known Tavis-Cummings Hamiltonian.® However, the
effect of superradiance, which is described by Tavis-
Cummings model, is omitted in our analysis since we con-
sider only the single-particle e-h states given by wave func-
tion Eq. (5).

The evolution of the system in the interaction picture is
described by the nonstationary Schrodinger equation

ifd|W)y=V|¥), where the interaction Hamiltonian is given

PHYSICAL REVIEW B 81, 085115 (2010)

by V=exp(iHt/h)(H+H o+ Hp+ AH)exp(—iH /%),  This
Schrodinger equation leads to the following equations for the
probability amplitudes:

ﬁA lwo
8t = 7 Apn+l§1(Ap 1,n+Ap+1,n)

lg\rn+ lB et lel(kpa wl) _ lAprnEA[)mem’

(6)
&BE’ 1 l(l)o .
ﬁ[n+ = 2 Bpn+l+l§2(Bp—1,n+1+Bp+l,n+1)
lg\yn+1A e kpa=en) lAwA,,,MEApm s
(7)
where
4

Aw= —/u(N/u) (8)

hV

is the local-field induced depolarization shift.'”” Obtaining
this equations we have taken into account that the interaction
Eq. (2) can cause the transitions between the states |a,,n)
and |b ,n+1) only. As it is seen from Egs. (6) and (7), two
competitive mechanisms manifest themselves additionally to
the ordinary Jaynes-Cummings dynamics: the local-field in-
duced nonlinearity and quantum diffusion due to the interdot
tunneling.

Let us restrict our consideration to the linear regime of the
carrier motion and omit the terms O(Aw) in Egs. (6) and (7).
By this means, we arrive at the set of coupled differential
equations with respect to unknown vectors \pr A1)

=[p ’n(]?,)] as follows:

atlpp,n = |:_ %&z —ig\n+ 1kp(t):|‘ltp,n + ié(‘ltp—l,n
+ 1;[’p+l,n)7 (9)
E=lE+&I+(&

-£)0.]/2, 1 denotes two-dimensional unit operator. Coeffi-
cients in Eq. (9) are expressed in terms of Pauli matrices

o1\ {0 =i\ (1 0
5=\1 o)%=\; o )%=\o _1) (O

acting on vectors W, ,(¢). In the Sec. VI we shall analyze the
limitations imposed by the nonlinear terms neglecting.

where &,(t) =G, expli(wt—kpa)&,],

C. Continuous limit

In some cases it is more convenient to replace the recur-
rent ordinary differential Eq. (9) by the system of partial
differential equations. To do this we should turn to the con-
tinuous limit, making the standard substitutions (see, for ex-
ample, Ref. 40) pa—x, W,,—W,(x), ¥, +¥,,,
-2W,,—a 25w, and R, —>K(x) Then the system Eq. (9)
leads to
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A 1, — a
oW, =|2ié- TO&Z—iganr 1&(wt — kx) | W, + ia* & W,

(11)

Equation (11) represents the system of partial differential
equations with the variable matrix coefficient k= k(wt—kx).
This is the basic system for most of our further calculations.

The initial conditions of different types to Eq. (11) are
dictated by the prior short-pulse optical pumping. Strictly
speaking, the excitation of Rabi waves is uniform pump-
probe process, therefore pump pulse should be included in
the equations of motion. The rigorous modeling of optical
pumping is by itself sufficiently complicated task. Thus, we
focus on QD-chain interaction with the probe field, deter-
mined by the Hamiltonian (2). Thereby, the pumping com-
ponent of electric field is removed from Eq. (11), but its
contribution into the quantum state formation may be taken
into account by the a priori chosen initial conditions to Eq.
(11). Such approach is justified because of (i) sufficiently
slight dependence of probability amplitudes on the fine de-
tails of pumping pulse configuration and (ii) a slight tempo-
ral overlap of pump and probe fields. Generally, initial dis-
tribution of probability amplitudes due to the optical
pumping is a nonstationary state of e-h pair in QD chain, i.e.,
coherent superposition of ground and exited states. The ini-
tial distributions of probability amplitudes are determined by
intensity and spatial structure of pumping pulse. For ex-
ample, spatially confined W wave packet for e-h pair in QD
chain can be formed as a result of the pumping by the
strongly focused optical beam, while for the traveling ¥
wave formation the pumping by the optical plane wave
seems to be suitable.

D. Typical values of model parameters

For obtaining physical characteristics of Rabi waves using
Eq. (11), the tunneling frequencies & and &, and coupling
factor g must be known a priori. Thus, &, ; or g are phenom-
enological parameters in our formulation. Even for defectless
chains &, ,, g depend on different factors and can vary in a
wide range. The rigorous theoretical calculation of & ,, g is
by itself a sufficiently complicated task, the results being
highly dependent on the assumptions. For a numerical results
reported in this paper, we extracted the values of physical
and geometrical parameters from different model estimations
as well as from experimental data. The realistic ranges of
variation for model parameters are presented in Table I
These parameters are borrowed from different sources and
mainly relate to the InGaAS QDs.

The values of tunneling frequencies &, have been esti-
mated by using both numerical quantum-mechanical
calculations** and simple quasiclassical approximations.?’*3
If the potential barrier height is about transition energy fw
the condition &> &, is satisfied.*> For the case of the transi-
tion between higher quantum states (analog of Rydberg
atom) both of levels can be placed near the barrier edge and
therefore the tunneling frequencies become comparable: &;
~&.

The QD dipole moment can be estimated as ,u~e%e"T/
(where e is the electron charge). Then the values of () from
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Table I correspond to the field strength £~ 10—10* V/cm.
Such a values of field strength can be easily achievable. The
strong coupling regime is dictated by the condition Qp, 2g
> 7! while the condition Qg, 2g~ &, establishes the cou-
pling factor values for the principal interplay of interdot tun-
neling and Rabi dynamics. As one can see from Table I, these
conditions are achievable in an experiment too.

Let us now discuss the ranges of applicability of the used
model with e-h tunneling as the main interdot coupling fac-
tor. The estimations of the Forster and dipole-dipole interac-
tions role are presented in a number of works (see, for ex-
ample, Refs. 21 and 49).

According to the formulation of the model in Sec. IT A,
the dipole-dipole QD interactions can be ignored. This as-
sumption can be justified as follows. The Forster energy is
about Aiu’/a®. For u~60 D, a~20 nm the value 30 ueV
is obtained,?! in good agreement with experiment’' (the
value of the same order is measured for dipole-dipole inter-
action too). For the a~5 nm the value of Forster energy
~69 meV is calculated in Ref. 49. The energy of tunneling
coupling (7é,,) decreases with rise of a exponentially,
whereas the energy of Forster and dipole-dipole interactions
diminishes algebraically, as a~>. For sufficiently large a the
contribution of these interactions to the interdot coupling be-
comes comparable with the tunneling contribution. We found
that assumption holds true for QD chains that are not too
rarefied (i.e., a is sufficiently small). In the Table I the range
of interdot distances a for which the tunneling plays role of a
dominant factor of interdot coupling is presented for poten-
tial barrier height ~1 eV. As a result, at given interdot dis-
tances the inequality ka<<1 is fulfilled if the plane electro-
magnetic wave is chosen as a working mode. The value ka
~1 is reachable too, but for the case of surface wave with
large retardation (k> w/c).

TABLE 1. Typical parameter values for QD chain interacting
with electromagnetic field. Symbol * denotes references containing
experimental data.

Parameter Symbol Value Reference
Quantum transition

frequency [oN ~1 eV

QD size v 4-20 nm 2241k 42% qnd 43
Interdot separation a 10-20 nm 2242% and 43
Electron tunneling

frequency & 1-4.5 meV a2k 4344
Hole tunneling

frequency ) 0<&<é

Rabi frequency for

classical light Qg 1072-5 meV 224345
Coupling constant

for quantum light 0.07-2.5 meV 19.41%
Relaxation time T 1071121072 1921% 4446% 45447
Depolarization shift  Aw 0.1 meV 1948
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FIG. 2. (Color online) Dispersion curves for Rabi waves for different parameters values. The solid lines show results with electron-
photon coupling, the dashed lines without it. (a) &=£&=8g, A=3g, ka=1, and n=5;( b) &=10g, &=3g, A=0, ka=0.143, and n=2; (c)

& =10g, &=0, A=-5g, ka=1, and n=>5.

III. TRAVELING RABI WAVES
A. Eigenmodes

Let us find the elementary solution of the system Eq. (11)
in the form of traveling waves (hereafter referred to as Rabi
WaVCS)I Anzunei(h+k/2)xe—i(v+w/2)t and Bn+1
=0, € K2 i(=02) \yhere v can now be identified as the
unknown eigenfrequency for a given wave number £, u,,, and
v, are the sets of unknown constant coefficients. Substituting
the chosen ansatz into Eq. (11) and omitting common factors,
we obtain

{v-A2+0(h)}u,—g\n+1v,,, =0, (12)
g\n+ lu, —{v+ A2 + %)}, =0, (13)

where A=w)—w,
O12(h) = & 5[2 = a*(h £ k12)°]. (14)

The existence of nontrivial solution of the system Eqgs.
(12) and (13) in respect to u, and v,, requires that the respec-
tive determinant vanishes. It leads to a quadratic dispersion
equation, which yields the values »(h). Solving it with re-
spect to v, we determine the eigenfrequencies of system as

1
Vl,z(”,h) =- 5[191 (h) + By(h) + Q,(h)]. (15)
Here,
O, (h) = VA7 +4g%(n + 1), (16)

Ayy(h) = A= 9y(h) + Dy (h). (17)

As it follows from Eq. (15), two different eigenmodes exist
for each value of photon number n, namely,

|\Pi,n(t)> = 2 [Ai,n(pa’t)|ap9n> + Bi,n(pa’t)|bp’n + 1>]’
P

(18)

where i=1, 2 is eigenmode number, the values A; ,(x,?) and
B; ,(x,1) are defined by the expressions

AL (x,1) =C, o HkI2)x il +ol2)t.

Cig\n+ 1 ith=k12)x p=i(vy-wi2)t

Brawi(6) = . (19
l,1+l( ) V1+A/2+192 ( )
and
Cog n + 1eirki2x g=ilvyte2)t
A2,n(xat) = i
v,—-A2+,
B, n+1(x’t) = Cgei(h_k/z)xe_i(Vg—w/Z)t (20)

where Cy,=C),(n,h) are normalizing constants, the values
O ,=01,(h) and v; = ,(n,h) are expressed by the Egs.
(14) and (15), respectively.

B. Dispersion characteristics

Figure 2 exemplifies the dispersion characteristics of the
two Rabi waves in a QD chain. Modes under examination
are characterized by continuous spectrum (the value 4 varies
continuously). The values 2>0 correspond to the guided
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FIG. 3. (Color online) Dependence of critical frequencies of
Rabi waves on the photon number, for the input parameters as fol-
lows: & =10g, &=7g, A=2(& &) +&a’k?, and ka=1.

wave traveling in +z direction, whereas the values 7 <0 cor-
respond to the guided wave traveling in —z direction. As Eqs.
(12) and (13) for k# 0 are noninvariant with respect to the
replacement 4 — —h, wave propagation along +z and —z di-
rections occurs nonanalogously. Therefore, the reciprocity
conditions break down: v| 5(n,h) # v| 5(n,—h). The reason is
the existence of preferential direction, which is determined
by the direction of photon mode propagation along the QD
chain (sign of the value k).

For comparison, the dispersion curves are also shown
when electron-photon coupling is ignored (g=0). One can
note that in the limit g— 0 both branches intersect. There is
only one cross point for & =§,, while there are two cross
points in general case. In contrast, the cross points disappear
for finite values g. Strictly speaking, because of electron-
photon coupling the cross points shift from real / axis to the
complex A plane.

The values v, , are real for all real h. Therefore, the sys-
tem being investigated is stable®® with respect to the infi-
nitely small perturbations. Dispersion equation for Egs. (12)
and (13) can be solved with respect to wave number A (v) for
given real-valued frequency v. Thus, an analysis of disper-
sion laws yields for every mode the critical frequency 7',
that for v<<1{’, the values h;,(») become complex. The
critical frequencies are determined from the condition
V‘,'fz(n)=v1,2(n,h(0)), where the transcendental equation with
respect to h‘l‘); is as follows:

b)) 1)
e

Physically, it means opacity of the QD chain for Rabi
waves in the frequency regime below critical value.”° At fre-
quencies in the regime 15" <w<<p{" the QD chain is opaque
only for one of the modes and at frequencies in the regime
v<1{, it is nontransparent for both of them. One can choose
the system parameters in such a way that at frequencies in
the special regimes all real solutions h(v) are either negative
or positive [as an example see Fig. 2(a)]. This implies one-
way opacity of the system, therefore Rabi waves could
propagate in one direction only. The reason is the nonreci-
procity of the system QD-chain+light.

It is significant, that critical values v{’, for both modes
depend on photon number n (see Fig. 3). This gives an im-
portant result, namely: the conditions of transparency of the

PHYSICAL REVIEW B 81, 085115 (2010)

0D chain are different for Rabi waves with different photon
numbers. Note, that v{" increases and 15" decreases as n in-
creases.

Usually both Rabi waves demonstrate the normal disper-
sion and propagate in the same direction. But for a special
choice of parameters one of the two modes in the narrow
frequency range indicates anormalous dispersion. For this
mode phase and group velocities are oppositely directed [see
Fig. 2(a)]. This behavior (along with nonreciprocal propaga-
tion) discriminate the Rabi waves with k#0 from the
Hopfield exciton polaritons in strong coupling regime (com-
pare Figs. 2 and 4.23 in Ref. 51). The dispersion character-
istics indicate special behavior for absolutely nontransparent
ground-state barrier: &=0 [Fig. 2(c)]. In this case the group
velocity v,,=dv/ dh of one of the waves is very small for all
h, except for the immediate vicinities of the cross points. As
a result, the modes exchange their places passing through the
cross points [e.g., on Fig. 2(c) v,,~0 for v; mode between
cross points —2=<ha =<1 and for v, mode at all other values
of 1]. Thus, except in the narrow ranges of wave number #,
only one of the modes transfers the energy along the QD
chain.

C. Discussion

Equation (11) in the limit of g— 0 describes the electron-
hole pairs in QD chain in equilibrium and inverse states,
respectively. The probability amplitudes Egs. (19) and (20)
cease to depend on n and have the form

A (x,0) = Clei‘hxe_iwl(m)t’ (22)

B,(x,1) = Cye'®¥e~i@2(42)! (23)

where o) ,(q)= = wy/2-§& 2(2-¢%a®) and A,(x,1)=B(x,1)
=0. Electron-photon interaction (at g # 0) is responsible to
the quantum transitions between the states in Egs. (22) and
(23) in the chain. In the strong coupling case these transitions
take place in the regime of Rabi oscillations, i.e., they can be
interpreted as a periodical chain of photon emissions absorp-
tions and e-h pair creations annihilations, respectively. Such
a type of oscillations is typical for different cases of strong
coupling of condensed matter with light. For example, it is
analogous to the exciton-photon strong coupling in the
Hopfield polaritons>'=>* with the e-h pair instead of a Wan-
nier exciton. The dependence w,,(¢) indicates the presence
of spatial dispersion in the both cases.

According to Egs. (19) and (20), the optical transitions
between the states in Egs. (22) and (23) occur satisfying the
quasimomentum conservation law, which is dictated by the
selection rule g;+k=gq,. Thus, in contrast to the Hopfield
polaritons, these transitions are indirect at k # 0. This mecha-
nism of quasimomentum exchange between e-h pair and
photon is precisely responsible to the spatial propagation of
Rabi oscillations.

On the other hand, Eq. (18) in combination with Egs. (19)
and (20) constitute a generalization of the dressed states de-
rived originally for two-level atom.? It should be noted, that
in contrast to the isolated QD or low particle electrically
small QD ensemble, the dressing parameter for QD chain is
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spatially temporally modulated. In other words, because of
the distributed geometry of QD chain the dressing moves
along the QD chain according to the traveling wave law
expli(kx—wr)].

Thus, each of the eigenmodes in Egs. (19) and (20) com-
prise traveling waves with different wave numbers h = k/2.
As a result, the Rabi wave propagation occurs as guided by
an effective periodically inhomogeneous medium with the
refractive index formed by spatially oscillating (with period
2/ k) electric field. Therefore, the diffraction appears in the
system. In the limit k— 0, the medium turns homogeneous
and the diffraction effect vanishes. The excitations in Eqgs.
(19) and (20) in this case are similar to the Hopfield polari-
tons. Parenthetically, the spatial oscillations of the partial
amplitudes are because of interdot coupling, therefore they
vanish in the limit of &, ,—0.

The modes in Egs. (19) and (20) can be excited indepen-
dently on each other by a proper choice of initial conditions.
For this case the Rabi oscillations do not take place, i.e.,
inversion is constant in space and time. This situation is
similar to case of stationary states in Jaynes-Cummings
model.” Generally, both of modes for given & may be ex-
cited together, which corresponds to the Rabi oscillations
regime (inversion undergoes time-domain oscillations).

Another interesting case consists in simultaneous excita-
tion of modes in Egs. (19) and (20) with the same frequency
v (in doing so the wave numbers & will be different). This
case corresponds to the spatial Rabi oscillations, with con-
stant in time, but spatially modulated inversion density (in-
version per unit QD).

Analogously to the other coherent excitations in con-
densed matter, Rabi waves in Egs. (19) and (20) introduce a
new family of quasiparticles (we name them rabitons). One
can apply to them the standard secondary quantization tech-
nique, whereby they form a convenient basis for solving of
different types of quantum-optical problems.

Similarly to the effect of self-induced transparency, the
Rabi wave propagation can be interpreted as the motion of a
precessing pseudodipole.”® However, the coherence mecha-
nisms in these two cases are principally different: in the Rabi
wave the coherence is settled by the dispersion law in Eq.
(15) while in the case of the self-induced transparency it has
a solitonic character.

Note, that the reflections of Rabi waves and their mutual
transformations at the field inhomogeneities become pos-
sible. Thus one obtain a unique possibility to control the
processes of the reflection and transmission of Rabi waves
by varying the spatial structure of the light.

IV. RABI WAVE PACKETS

A. Electron-photon dynamics

Let us next find the general solution of the system Eq.
(I1). In order to solve it we first write the equations for
slowly varying amplitudes ®,(x,r)=e @I (x 7). Tt
then follows from Eq. (11) that:

a®, - i[(2 - a*k¥4) - g\n + 13(1) D, + a’ké,E0,®,
- a5 ®, =0, (24)

where X(t)=d, exp(—id,At). Let us note that coefficients of
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last system does not include the QD position x. This system
can be solved by using the Fourier transform with respect to
X

®,(x,1) = f ’ @, (h,t)e™dh. (25)

Substituting Eq. (25) into Eq. (24), we replace the partial
differential equations by the system of ordinary differential
equations

ditq?n = i[-g\n+ 130D, (26)
where A=9(h)={[9,(h) + O, (W) 1T +[9,(h) - 0,(h)]6.}/2.

The system Eq. (26) can be easily integrated, the solution is
given by

@, (h.1) = p,(h,1)®,(h,0), (27)

where
ﬁn(h,t) — ei[ﬁl(h)+1‘}2(h)]zei&ZAzei[m&Qn(h)]z’ (28)
6=(6,,0,,0,), m is the unit vector of the form

(—2g\n+1 /192,,0,4,,+/€,). The operator expression (28)
can be written in matrix form as follows:

@u(h1)e Py (h, 1)t

0, (h,t) = ) . . 29
PAID= e 0 g, e 2
In the foregoing equations
N Q, (bt Agdh) - Q,(h)t
@, (h,t) =cos ; ) +i Q]:((h))sm ; ) , (30)
—
2¢Vn+1 _ Q,(h)t
hit)=—1i , 31
) == im0 o sin G1)
1
0.(h) = E[ﬁl(h) +0y(h) £ A, (32)

Q,(h) and A,(h) are determined by Eqs. (16) and (17),
correspondingly, and ®,(h,0) to be obtained from the initial
conditions by the inverse Fourier transform

= (7 e
®,(h,0)=— f e KD (x.0)dx.  (33)
TJ oo

Thus, for the vector of probability amplitudes W,,(x,7) we
have the following expression:

\I’n(x, l) — ei(kx—wl)é'z/z

X f ﬁn(h’ t) (f)n(h’ O)Ei{hx+[ﬂl (h)+192(h)]z/2}dh )

(34)

The account of relaxation in the framework of 7 approxi-
mation can be made to Eq. (34) after implementing the re-
placement exp(—iwtd,/2) —exp(—iwtd,/2)exp(-\t/2),
where A= 7! is relaxation factor. The value of \ can be taken
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from experimental data (see. Table I and references therein).
Naturally, 7 approximation is very rough model and its ap-
plicability is limited only qualitative assessments. For ex-
ample, electron-phonon interaction, especially for longitudi-
nal acoustic phonons is nonlinear,!> which shows that for this
case 7 approximation becomes invalid. The detailed investi-
gation of relaxation processes is beyond the scope of this
paper and will be the subject of the further work.

Expression (34) in combination with Eq. (33) is the out-
come of this section. It allows one to calculate such observ-
ables as inversion, exciton-exciton, and exciton-photon corr-
elators for different initial states of light and QDs.

B. Dispersionless approximation

Let us now analyze the propagation of Rabi waves for the
case of spatially localized initial e-h state. The QD chain is
supposed to be initially either in the ground state [A,(x,0)
=0 for all n] or in the excited state [B,(x,0)=0 for all n] or
in the coherent superposition of two referred states.

Let us characterize the spatial-temporal dynamics of Rabi
oscillations by the spatial density of the inversion (the inver-
sion per unit QD)

w(x, 1) = a X [|A, 0 = B (.02 (35)

Another important quantity is the integral inversion w(z),
which is related to the spatial density of inversion by the
expression

w(t) = iJm wix,?)dx. (36)

—o0

In order to present illustrative results let us stop on the
simple analytical solution of Eq. (11) making use the disper-
sionless approximation. Let us approximate the initial spatial
distributions by the Gaussian beams Cy, pexp[—(x
—dy p) /Zof‘ s, where Cy p, dy p, and 04 p are normalization
constants, positions of the beams, and their widths, respec-
tively (the indexes A and B refer to excited and ground states
of the electron in the QD chain, respectively).

According to Eq. (33) we obtain for ®,(h,0)=[ hni(li’})')]
a,,(h) ~ c(n)g_(h + ]‘/2)20'/2‘/28—122',4(h+k/2)7 (37)
b1 (h) ~ c(n+ 1)6_(h - k/z)z"%/ze‘idB(h—k/Z), (38)

where c(n) is an arbitrary photonic distribution. One can see
from Egs. (37) and (38) that the spatial spectrum of W, (x,0)
is given by two Gaussian peaks W1th peak widths 1/0p 4 and
positions of the peak centers h = *k/2, respectively. If
op 4 are sufficiently large the spat1a1 spectrums are strongly
localized to the points h1 » and the main contribution to the
integration in Eq. (34) comes from the narrow VlClnltleS of
the  localization  points.  Assume  U;(h)=1V; (h )
+(0;/ )| o) (h = ) and p,(h, r)~p,,(h<1°;,t) (the dispér-
sion effects neglectmg) Having made the approximation we
can express the integral Eq. (34) analytically. It leads to
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A, (x,1) = B2 NI A (x +032,0) Qe‘“”p +A,x
+ 051,005 e™ 2 4 [B,,,(x + v]1,0) e~ ™!

— B, (x +071,0) 712} (39)

B, (x,1) = e—i(kx—wt)/ze—)\r{[An(x + vgt,O) nze—ivgz —A,(x

+051,0) nze_i”z’]e_"k)‘/z +[B,1(x +v]1,0) g”fe_i”T’

+ By (x + 071,0) e 112} (40)

Here, the velocities vli’2 are defined as
v =v (W) == 2&a%k¢ (41)
vy =v = (hY) =2&,a%E5 (42)

the frequencies Vli’2=1/172(l’l, +k/2) can be found from Eq.
(15) after implementing the replacement h= *k/2 therein.
The values §ﬁ2 and 7, , are introduced to denote the ampli-
tude factors, respectively:

{ Q (hl 2) eff(h(l(?%) (43)
127 20, (hY) ’
g\/’n +1
= 44
72 0,07 “

Generally, as is apparent from Egs. (39) and (40), any prob-
ability amplitude in the Rabi wave packet is made of four
components. Each of them represents the separate subpacket,
which is characterized by the own velocity of movement
v1 2 partlal amplitude factors {1 , and 7 ,, and frequency
shifts V1 ,. Two of them [first and second terms in expres-
sions (39) and (40)] correspond to the excited initial state
and two another [third and fourth terms in Egs. (39) and
(40)] correspond to the ground initial state. The velocities in
Egs. (41) and (42) coincide with the group velocities of trav-
eling Rabi waves in Egs. (19) and (20) for A= * k/2: one can
clementary verify, that vy =dv| 5/ h|,r=0v$,(k/2) and v5
=dvy, 2/ O |y =0{5(=k/2). Tt is essentlal that the velocities
vy -, as well as the frequency shifts vl , depend on the photon
number n. It means that the spatlal propagation of wave
packet is accompanied by the change in quantum light sta-
tistics (for example, if we assume that the light is initially in
the coherent state, Poisson photon distribution transforms
with propagation to the sub-Poisson or super-Poisson one).
Of course, the region of asymptotic solution in Egs. (39) and
(40) is limited by the appearance of diffraction spreading.

Under the some specific conditions the number of sub-
packets could decrease. Two mechanisms of such decrease
are possible: the first one is the tending to zero the subpacket
amplitude and the second one is the confluence of the sub-
packets because of velocities synchronism.

As is seen from Egs. (41) and (42), if

A (1) =0, (45)

for one pair of the subpackets the velocity synchronism con-
dition v} ,=v7 , is fulfilled. Notice that Eq. (45) is similar to
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Integral inversion

FIG. 4. (Color online) (a) Space-time distribution of the inversion density and (b) temporal dependence of the integral inversion in the
QD chain for a coherent initial state of light ((n)=4). The initial state of QD chain is a single Gaussian wave packet. A,(x,0)=c(n)exp
(—x21262) /8702, B,,1(x,0)=0, &=10g, &=7g, A=2(& - &)+ &a*k2, ka=0.5, 0=20a, and A=0.05g.

the ordinary synchronism condition A=0 in the single two-
level system. The velocity synchronism condition for given
QD-chain parameters can be fulfilled by fitting the value of
the detuning A. If this is the case, three subpackets exist
instead of four ones due to the confluence mechanism acting.
Note, that A,(k/2) and A,;(—k/2) cannot be equal to zero
together at k# 0.

If the system is initially prepared in the stationary state,
and the synchronism condition is fulfilled in the correspond-
ing point [for example, B,,;(x,0)=0 for any n and
A,s/(—k/2)=0], only one subpacket is preserved. In this case
the expression for the inversion density becomes rather
simple

wx,f)=aD A,zl(x + &a*kt,0)[1 -2 sin®(g\n + 11)].

(46)

The relaxation factor \ for simplicity is supposed to be zero.
Expression (46) sums up contributions of different photonic
states (terms with different 7). Each contribution is the prod-
uct of two multipliers describing different optical processes.
The second multiplier represents the temporal law of Rabi
oscillations with the frequencies v,=2g\n+1, occurring in
the isolated QD, while the first one indicates the movement
of the region of Rabi oscillations along the QD chain with
velocity v=§&a*k. One should note, that in the case of the
exact synchronism v does not depend on n, whereby in this
partial case the quantum statistics of light is not distorted
with propagation of the wave packet. In particular, the initial
coherence of quantum light persists in time. It is immediately
follows from Eq. (36) and normalization condition that the
integral inversion w(z) associated to the inversion density Eq.
(46) oscillates in time identically to the Rabi oscillations in
the single two-level system [see Eq. (6.2.21) in Ref. 1 at A
=0].

The movement of the electron along the QD chain in the
absence of electron-photon coupling is caused entirely by
interdot tunneling through the corresponding energy level.
As it shown in the remainder of this section, Rabi oscilla-
tions lead to a qualitatively new effects in the tunneling.
According to Egs. (39) and (40), the movement of the ini-
tially ground-state subpacket is governed by the tunneling

transparency of the excited energy level and vice versa. This
implies that the tunnel transition of the Rabi subpacket occur
only through the opposite energy level after leaving the ini-
tial level due to the Rabi jump. If one of the barriers becomes
absolutely opaque, the corresponding pair of subpackets does
not move: vi2—>0 at &, ,—0. If inequality & > &, is satis-
fied, the next surprising mechanism takes place: Rabi oscil-
lations induce an abnormally high effective tunneling trans-
parency for the initially ground-state subpacket as well as
suppress it for initially excited one. Such a situation takes
place even for n=0 [B,(x,0)=0 for all n], whereby we con-
clude that the tunneling may be suppressed by the photon
vacuum.

The existence of the momentum exchange between the
photon and the e-h pair (see Sec. III C for more detail) is
another necessary condition of Rabi subpackets motion:
vli’2—>0 at k—0. The absence of such mechanism in
Hopfield polaritons’'~* makes above described effects im-
possible for them.

C. Coherent state: Collapses and revivals picture

Moving on to the more rigorous analysis of Rabi wave
packets dynamics (in particular for taking into account the
diffraction spreading) let us calculate the integrals in Egs.
(39) and (40) numerically. Consider the case of an excited
initial state with space distribution in form of single Gauss-
ian beam: A, (x,0)=c(n)exp(-x*/20?)/{mo® and B,,,(x,0)
=0. Assume that the light is initially prepared in the coherent
state, so photon distribution is given by the Poisson law:
c(n)=(n)"2e=""2/ \ln!, where (n) defines the average photon
number. The spatial-temporal dynamics of inversion density
for this case is depicted on Fig. 4(a). As is seen, an originally
Gaussian packet temporally oscillates in agreement with or-
dinary trends of Rabi dynamics and, at the same time, moves
along the chain. Oscillations collapse to zero quickly, but
revive with time increasing in another area of space. The
phenomenon of collapses and revivals of Rabi oscillations is
well studied for isolated two-level system,"3® but the spacing
between the collapse and subsequent revival is a manifesta-
tion of qualitatively new behavior, dictated by the interdot
coupling. Long-time revivals in Jaynes-Cummings model
have been predicted in Ref. 56 and interpreted as a quasicor-
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FIG. 5. (Color online) Space-time distribution of the inversion in the QD chain for the case of two counterpropagating wave packets.
A, (x,0)=c(n)exp[-(x—30)?/20%]/V4mo? and B, (x,0)=c(n+1)exp[—(x+30)2/20%]/V4mwc>. The light is initially in coherent state ({n)
=35), A=0, ¢,=4=10g and ka=0.33. (a) 0=10a and A=0 and (b) 0=20a and A=0.05g.

relations of initial coherence. The feature mentioned above
means that in our model the spatial correlations exist as well
as temporal ones. It will be demonstrated below by means of
direct analysis of space-time correlators (see Sec. VII).

In spite of sufficiently low variations in the inversion den-
sity inside the packet [depicted in Fig. 4(a)], the integral
inversion [presented in Fig. 4(b)] oscillates between —1 and
1, indicating strong light-QD coupling.

Let us examine now the case of initial QD state in the
form of the coherent superposition [both A,(x,0) and
B,.1(x,0) are nonzero]. As it has been noted above, the syn-
chronism condition cannot be fulfilled together for both pair
of subpackets (except the case of one of the pairs is motion-
less, see below). As a consequence, we have four subpackets
in general case (or three ones if A,;=0 for one of the pairs).
If ¢, =&,=¢ (potential barriers with equal transparency) and
A =0, both pairs of packets move with pairwise equal veloci-
ties in opposite directions (v, =-v5). If the initial spatial
distributions of probability amplitudes for ground and ex-
cited states are spaced (d, # dg), the subpackets will collide
(see Fig. 5). Thus, initially Gaussian profiles of packets de-
form with time increasing due to the difference in subpacket
velocities.

One should note that for the case of quantum external
field in the coherent state QD chain cannot be saturated, i.e.,
the integral inversion cannot be a constant (see Fig. 6). The
reason is the mutual asymmetry of A,(x,7) and B, (x,?)
with respect to n and, as a result, 2,7 |A,(x,1)|>dx

0.4 T T T T T
0.2

0.0

-0.2 - -

Integral inversion

L0.4 L s 1 s 1 s 1 s 1 s Al

FIG. 6. (Color online) Temporal dependence of the integral in-
version for a coherent initial state of light at the input parameters as
follows: (n)=5, 0=20a, and A\=0.05g (solid line); (n)=5, o=10a,
and A=0 (dotted line); and (n)=0.5, 0=20a, and A=0 (dashed line).
In all cases, &£=§,=10g, A=0, and ka=0.33.

3,07, |B,.1(x,1)dx is not a constant for any form of x
dependence of A,(x,r) and B,,(x,7). This asymmetry is
caused entirely by quantum-field mechanisms and deter-
mines the contribution of QD interaction with photonic
vacuum to the inversion. Therefore, it increases as the aver-
age photon number (n) decreases (compare Figs. 5 and 7).

In another limiting case, for &=0 (fully opaque ground-
state barrier), the velocities v, =0 and one pair of subpackets
do not moves along the chain. If, moreover, A, .(k/2)=0,
then vj=v7, and the synchronism condition is fulfilled for
both of packet pairs (see Fig. 8).

D. Fock qubit state and vacuum Rabi waves

Let us now consider the interaction of the QD chain with
light in one more important initial state, namely, the Fock
qubit state, i.c., a superposition of two Fock states: |/40))
=C,|N)+C,|N+1), where N is an arbitrary fixed number,
C,, a given number, satisfying the normalization condition.
As in the previous case, the initial spatial distributions of e-h
pair probability amplitudes would be approximated by the
Gaussian beams with spatial spectrums in Egs. (37) and (38).
The spatial-temporal dynamics of the inversion density for
the initial state of field |¢f(0))=1/\/§|0)+1/\5|1) is shown

0.014

0.007

-~

-
‘ -0.014
-
——

0

1 L L L
-50 0 50 100

O
-100

FIG. 7. (Color online) The asymmetry of the inversion space-
time distribution for two counterpropagating wave packets in case
of the coherent state of light with small average number of the
photons  (n)=0.5.  A,(x,0)=c(n)exp[-(x—30)2/26%]/ {42,
B,i1(x,0)=c(n+1)exp[-(x+30)%/20%]/ V470>, & =&=10g, A=0,
ka=0.33, 0=20a, and \=0.
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FIG. 8. (Color online) Space-time distribution of the inversion
in the QD chain for the case of the fully opaque ground-state bar-
rier. A, (x,0)=c(n)exp[—(x=30)%/20%]/ V4mwa>, B, (x,0)=c(n
+Dexp[-(x+30)2/202]/Y4ma?, &=10g, &=0, A=2(£-&)
—&a%k?, ka=0.5, 0=20a, and A=0.05g. The light is initially in the
coherent state with (n)=5.

in Fig. 9(a). It can be seen from the figure, that Rabi wave
packet does not collapses and revives, but oscillates in a
complicated manner [see also integral inversion dynamics,
Fig. 9(b)].

In the remainder of this section we consider the spatial
propagation of vacuum Rabi oscillations. It is well known
that such type of Rabi oscillations exist in initially excited
two-level system strongly coupled with zero-photon light
mode, as a result of spontaneous emission.! The similar ef-
fect takes place in the QD chain, but in contrast to uncoupled
two-level systems, temporal oscillations accompanied by its
spatial movement, which is illustrated by Fig. 10. The spon-
taneous emission support couples single-mode zero-photon
state with one-photon state only, thus, this excitation can be
imagined as a wave beam characterized by the monochro-
matic Rabi-frequency spectrum and continuous spatial spec-
trum at the same time. However, it should be noted that one
need to use a multimode light theory for full treatment of
condensed matter interaction with photonic vacuum.?® This
problem for Rabi waves is a subject for future consider-
ations.
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FIG. 10. (Color online) Space-time distribution of the inversion
in the QD chain for the vacuum initial state of the field. Ay(x,0)
=(1/¥mo?)exp(=x2/26?) and A, (x,0)=0 for n=1 and B, (x,0)=0
for all n, &, =6g, &=5g, A=2(&,- &) +&ak?, 0=10a, ka=0.5, and
A=0.05g.

V. CLASSICAL LIGHT LIMIT

Let us move on to the quasiclassical limit of Rabi waves
theory. Here, we focus only on the case when the incident
electromagnetic field is prepared in the coherent state with
the large average photonic number (n), thereby permitting us
to neglect the quantum nature of the light and replace the
electric field operator by its expectation value E(x,?)
=Re{€ expli(kx—wr)]}. Omitting the local-field effects as
before, we can write the simplified Hamiltonian of the sys-

tem “QD-chain-electromagnetic field” in the form H :I:IO
+ Hy, where the term
.~ h

Q. .
Hy= %2 G0 DG v He]  (47)

describes Rabi oscillations in noninteracting QDs and (g
=p€/h is the Rabi frequency.! The interdot interaction
mechanism and light properties are independent of each

other, so the term fIT is defined as before by Eq. (3).
The state vector of the system has the form of coherent
superposition

Integral inversion

A
c

A=)

g

FIG. 9. (Color online) (a) Space-time distribution of the inversion and (b) temporal dependence of the integral inversion in the QD chain
for the field in the Fock qubit initial state. |¢f(0))=1/\/§|0)+1/\/§|1), Ap(x,0)=A,(x,0)=(1/Vm0?) exp(—x>/20?) and A,(x,0)=0 for n
=2 and B, (x,0)=0 for all n, &=10g, &=Tg, A=2(&~&)+&a’k2, o=20a, ka=0.33, and A\=0.05g.
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FIG. 11. (Color online) Space-time distribution of the inversion in the QD in the classical light chain for a single Gaussian wave packet
A(x,0)=(1/¥maDexp(—x2/262), B(x,0)=0, & =30, &£=0.9¢,, A=2(&-&)+&Ea*,2, ka=0.33, and 27N/ Qx=0.1. (a) o=5a and (b) o

=15a.

(1)) = 2 (A,(0)]a,) + B,(0)|b,)), (48)
p

where A ,,(7) and B,(t) are unknown functions. The equations
of motion for them can now be obtained using approach of
Sec. II B. Introducing the decay factor A into the nonstation-
ary Schrodinger equation and having made the continuous
limit transition similar to the Sec. II C, we obtain the system
of equations as follows:

A A, Q) .
oW = | 2if- %&Z - S S ik = on) [ W+ iR

(49)

where \I'(x,t)=[ggjg]. The system Eq. (49) may be consid-
ered as a particular case of the general system Eq. (11) and
can be solved in the same way, which amounts to

‘I’(x,t) — ei(k"—“’l)&z/Ze—)\f/z

% f ﬁ(h,t)(f)(h,O)e"{”“[’f’l(")"‘92(")]’/2}(1}1.

—00

(50)

Here, the values p(h,t), ¢~ (h,t), ¢,(t), 8+(h), Q(h), and
A,/(h) are determined by equalities in Egs. (16), (17), (28),
and (30)—(32), respectively, after implementing the replace-
ment 2g\n+1— Qp therein [in doing so the photonic num-
ber dependence in p(h,1), ¢=, iy, Q disappears]. The vector

function @(k,0) is determined by the initial conditions simi-
lar to Eq. (33).

A typical space-time distribution of the inversion density
w(x,t)=a[|A(x,1)|*~|B(x,)|*] is shown in Fig. 11. As is seen
from the figure, the space-time dynamics of Rabi wave
packet is similar to the case of vacuum oscillations but it is
of substantially different physical nature: the reason of the
QD quantum transition between excited and ground quantum
states is the driving field action for quasiclassical case and
spontaneous photon emission for vacuum oscillations. Note
that more narrow wave packet spreads heavily, than the
wider one [compare Figs. 11(a) and 11(b)].

Figure 12 illustrates the temporal behavior of the integral
inversion for the case of classical light. Since the photon
distribution does not change, collapses and revivals are ab-
sent. However, another phenomenon of the similar nature
takes place because of distributive geometry of QD chain. In
contrast to the isolated Rabi oscillator, the integral inversion
in QD chain decreases as time increases. Such a damping is
of nondissipative nature and keeps out even at A=0. This
trend can be explained in the following manner. The effec-
tive detuning A,;(h) [and therefore the Rabi frequency
Q(h)] depend on h, thereby implying that the Rabi-jump
dynamics is presented as a superposition of harmonic oscil-
lations with different frequencies. The existence of dephas-
ing between different elementary oscillators leads to the
damping of integral inversion similar to the effect of inho-
mogeneous broadening in the ensemble of nonidentical os-
cillators. The damping rate is controlled by the values of
wave number k and coupling constants & ,. If the QD chain
is initially prepared in the excited state [B(x,0)=0], the
damping is predominantly determined by the product aék,
while for the QD chain initially prepared in the ground state
[A(x,0)=0] it is entirely defined by a&k. In the case of
coherent superposition as a initial state both a& k and a&k
are important. If k=0, & =§,, the dependence A, (k) and,
respectively, the dephasing effect disappears. As a result, the
integral inversion oscillates harmonically between —1 to 1
without damping (dotted curve in Fig. 12). In the weak cou-

1.0

Integral inversion
[=}
[=}

FIG. 12. (Color online) Temporal dependence of the integral
inversion in the classical light for the input parameters as follows:
A=0, k=0, and &,=£&,=3Q (dotted line); A=&a’k?, ka=0.33, and
&=6=3Qx (solid line); and A=2(& —&)+&a’k?, ka=0.33, &
=30, and &=1.5Q; (dashed line). In all cases o=5a and \=0.
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FIG. 13. (Color online) Space-time distribution of the inversion
density in the QD chain in the classical light for two counterpropa-
gating identical Gaussian wave packets: A(x,0)=exp[—(x
-30)2/26%)/ ¥4mo?, B(x,0)=exp[-(x+30)%/20%]/ Y4mwa?, A=0,
ka=0.33, 0=5a, {;=§,=3Q%, and 27N/ Qz=0.1.

pling limit the indicated dephasing mechanism is analogous
to the Landau damping in plasma.>®

Interaction of two counterpropagating identical Gaussian
Rabi wave packets colliding at x=0 is shown in Fig. 13.
Unlike the case of quantum field, the space-time distribution
of the inversion density is fully symmetrical with respect to
the line x=0, and integral inversion does not oscillate at all:
it is equal to zero for =0 and arbitrary values of Q.

VI. INFLUENCE OF THE LOCAL-FIELD EFFECT

Local fields are depolarization fields arising inside QDs
due to the dipole-dipole electron-hole interaction. As a result,
the field acting on the e-h pair differs from mean field.*®
Hereafter this difference will be referred to as local-field ef-
fect. The local-field action is described by the component

AH of total Hamiltonian given by Eq. (4) and leads to a
nonlinear terms in the equations of motion [last terms in Egs.
(6) and (7)]. The presence of nonlinearity results in the quali-
tatively new features of Rabi oscillations in single QDs.!1
The detailed analysis of the local-field influence on the Rabi
waves is the subject for future investigations. In this section
we consider only some aspects of this problem and give
some simple estimations.

Let us consider finite (of the length L) QD chain interact-
ing with classical light. The relaxation processes are ne-
glected (i.e., N=0). The equations of motion follow from
Egs. (6) and (7) in the same way as Eq. (11) reduces to Eq.
(49) and have the form (£,=§,=¢)

dA=— é(wo —49A + ITRBe’(kx_‘”’) +iéa’TA - iAw|BI’A,

(51)

9B = é(wo +48)B + ZTRAe"(k""‘”) +i¢a’3B — iAw|A]’B.

(52)
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Let us use the periodic boundary conditions (Born-von
Karman conditions)

A(LI2,8) = A(= LI2,1),B(L/2,1) =B(- L/2,1).  (53)

Let us suppose that the electromagnetic field satisfies the
periodic conditions Eq. (53), i.e., kL=2mm, where m is inte-
ger number. Let us seek partial solution of the system in Eqs.
(51) and (52) in the form of traveling wave: A(x,r)
=uoei(h+k/2)xe—i(v+w/2)t and B(.X, t)=eri(h—k/Z)xe—i(v—w/Z)t, where
uqy and v, are the unknown constant amplitudes satisfying the
normalization condition for wave function, & and v are the
unknown real values. Substituting A and B into Egs. (51) and
(52) we obtain

QO
[v+ ¢y — Aw|vg[ Tup + 7R00=0, (54)

Q
[V+ ¢2—AW|u0|2]Uo+TRM0=0, (55)

where ¢ ,(h)=2& ,F A/2-§ ,a*(h+k/2)%. The use of
boundary conditions Eq. (53) leads to a quantization condi-
tion for h: h=n/L, n is integer. Expressing v, from Eq. (55)
and substituting it into Eq. (54), we obtain

Qilv+ )]
4[v+ dy(h) — Aw|ug|*T?

v+ ¢ (h) - 0. (56)

The wave-function normalization condition amounts to

Qz ) , 1
(1 AR LU AL

Equations (56) and (57) form the closed system of equa-
tions with respect to v and |uy|?, which defines the spectrum
of Rabi waves v=v(h)=v(n) with regard to the local-field
effect. It should be noted that only solutions with real-valued
v have physical meaning [otherwise the system Egs. (54) and
(55) contradicts to the initial Egs. (51) and (52)]. In the limit
cases L—o or Aw—0 the system [Egs. (56) and (57)] re-
duces to the dispersion equation®’ for Rabi waves in the in-
finite QD chain interacting with classical light.

The spectrum of the Rabi waves for two essentially dif-
ferent values of L but identical Aw and other parameters is
shown in Fig. 14. The curves depicted in Fig. 14(a) corre-
spond to the QD chain of large length. The local-field effect
in this case is negligibly small, and the spectrum of the Rabi
waves is practically identical to obtained in Ref. 45. For QD
chain of the small length the situation becomes principally
different due to the nonlinear effects. As a result, any cross
point transforms to the closed loop, which corresponds to the
appearance of two additional roots of system [Egs. (56) and
(57)]. Each of these roots corresponds to the existence of
additional line in the Rabi wave spectrum. The size of this
loop decreases as the ratio Aw/{); decreases.

The detailed structure of the spectrum in the vicinity of
the closed loop is shown in Fig. 14(c). Let us assume that the
frequency of Rabi oscillations changes adiabatically (for ex-
ample, due to the change in light frequency). Thus, the QD
chain transverses to another spectral branch with otherwise
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FIG. 14. (Color online) Dispersion curves for Rabi waves subject to local-field effects. (a) L=200a and (b) and (c) L=20a. In all cases
&1=6=30%, ka=0.257, A=0, and Aw=100Q. The discrete points, corresponding to different spectral lines, are joined together only to aid

the eyes.

index n (and, correspondingly, wave number /). Such a set
of transversions may be interpreted as an adiabatically slow
movement of the quantum state of the QD chain in the v-h
plane [it is shown by the arrows in Fig. 14(c)]. The principal
trend of such movement is the nonidentity of its trajectories
for the opposite directions of motion. Thus, the loop is of
hysteresis character, thereby the interaction of the local-field
effect and Rabi waves leads to the bistability of quantum
states in the QD chain. The detailed analysis of the stability
of different spectral branches with respect to the infinitely
small perturbations is the subject of future investigations.
Let us identify some sufficient conditions permitting us to
neglect the local-field effect influence on the Rabi wave-
propagation processes. An analysis in Ref. 19 for isolated
QD has shown that the local-field effect can work on the
Rabi oscillations in two different regimes, which are caused
by the relation between Rabi oscillation frequency (),
=\JA?+4g%((n)+1), ({n) is the average photon number) and
depolarization shift Aw. In the first regime, established by
the condition (),,=Aw, local-field effect very slightly af-
fects the Rabi dynamics. As a result, the integral inversion
oscillates between —1 and 1, and ordinary physical picture of
collapses and revivals takes place. In the second regime dic-
tated by the opposite condition ),y <Aw, time evolution of
inversion is strongly affected by the local-field effect. In con-
trast, integral inversion oscillates between —1 and 0, and the
collapse-revivals effect completely disappears (for details see
Ref. 19). The role of €,y for QD chain is played by the
difference v,(n,h)—vy(n,h), determined by Eq. (15),
whereby we conclude that the local field omitting for travel-
ing wave is justified in the first regime, wherein the condition

v, (n,h) — v(n,h) = Ao, (58)

holds true. In the case of Rabi wave packet the local field
neglecting permissible if the condition in Eq. (58) hold in the

vicinity of the localization points of spatial spectrum, i.e.,
v1(<n>,h(1%)—v2(<n>,h(1‘2) = Aw, while in the second regime,
wherein the condition in Eq. (58) breaks down, a more rig-
orous analysis based on the system Egs. (6) and (7) is re-
quired.

VII. CORRELATION FUNCTIONS

Whereas Secs. IV-VI address the inversion density and
integral inversion, we now proceed to the exciton-exciton
and exciton-photon multitime correlation functions of the
Rabi waves. For this purpose it is convenient to use the ini-
tial discrete model of QD chain and make the transition to
the continuous limit only on the final step of analysis. Along
with the Schrodinger picture operators &;", we introduce the
Heisenberg picture operators &;(t) presented in the terms of
evolution operator 0(t,0) as cArpt (1= U*(t,O)é'; lA](t,O).
Omitting intermediate steps provided in appendix, we
present here only the final result for evolution operator

0(1,0) = %2 >

n pq Y -ma

la

- is
{¢, (h.1)e'|a,,n){a,.n

+ i, (h,t)

X [ei‘s;’|ap,n><bq,n + 1]+ e"|b,,n + 1)Xag.nl]
+ @ (h,0)e b ,,n + 1)(b,n + 1[}e™P~Ddp.  (59)

Here ¢, (h,t), ,(h,1), and Q,(h) are given by formulas
(16), (30), and (31), respectively. Quantities 5; and A, z(h)
are defined by expressions (17) and (32) after implementing
the replacements & , —2&; , cos[(h = k/2)a].

According to Eq. (59) the exciton-exciton correlation
functions G](}’t)i(t,t’) = <&;(t)6';(t')> can be represented as fol-
lows:
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la
G(l)(t,t/) — 42 E f f J eih’(p—q)aei(qg—ph)aei(lh—rg)ae—iA(z—t’)[qD;(h/’t)(P;(h/,t/)
P4 167 n Lr —la
X - l//n(h,J)l//n(h,st,)][QDZ—pl(h’t)()o;+1(g5t’)uzn+l(O)Mr,n+1(0)
X + ¢n+l(hvt) ¢n+l(gst,)v;in+2(0)vr,n+2(0) + qD;-H(h’t) ¢n+l(g’t,)u;n+1(0)vr,n+2(0)
X = lr//n+1(h’t) (P;+l(g’t’)vZn+2(0)ur,n+l(O)th,dhdg’ (60)
|
where U, ,(1)=A,,,(1)e kpa=wo2 and Uyt (1) Let us consider the case of B, ,,;(0)=0 and ¢'=0. Then
=B, ,.1(t)e ’(kP“ “’00/2 taking into account that ,(h,0)=0, ¢, (h,0)=1, and

One can see that in general case GV (z,1") cannot be rep-
resented as G;l_)q(t,t ) or G;,{()](t ¢'). It indicates the absence
both spatial and time homogeneity.

J7 €4 dg =278,/ a, we obtain rather simple expression
for correlation function

3 —iAt
Gy)(1,0) = EE f f o@D gr (0 1)@ (1)t} 41 (0)1tg 141 (0)dh' (61)
—mla

Having made the substitutions pa—x, ga—x’

214) f o0* dZ, EH_J‘ o0*

..d7' and approximation cos[(h*k/2)a]=1

—(h+k/2)?a*/2, we obtain the corresponding correlatlon function in the continuous limit as

2 —iAt

G (x,x',1,0) =
The plot of normalized correlation function

Oixx' 1,1) =

2 f f J M 0D ot (! ot (D, (2,0) iy (x',0)dh' dhdsz. (62)
—rla

GY(x,x',1,t")

(63)

GY(x,x,0,00GV(x",x",0,0)

for x'=0, t'=0 is presented on Fig. 15. The external electromagnetic field and electron in the QD chain are supposed to be
initially in a single number state and excited state [B,,(x,0)=0], respectively.

The correlation function of the polarization operator a'+(t) with the operator of the external field E; (t) Eae'kPa=o (exciton-

photon correlators) appears as

(E,()é3(0) ="

la
> f J dhdi' (gt (0 ONm+ 1L, (0’ (0)ity,(0) + @ (D) (00111 (0)]
Lr —7la

- 1/111+l (h, ’t) \"n + 2[ llln(h’t)vj,rwl(o)ul,n(o) + ¢-r:(h’t)v>:,n+l(0)vl,n+l (O)J}eipa(h—h')ei(h'r—hl)aei(kpa—wol)eiw(t—l’) .

VIII. CONCLUSION

To conclude, we have developed a theory of Rabi oscilla-
tions in a periodical 1D chain of two-level QDs with tunnel-
ing coupling, exposed to quantum light. The influence of
interdot coupling and Rabi oscillations on each other was
considered in detail. The following conclusions are emerged
from our studies. (i) The interdot tunneling in the QD chain
exposed to quantum light leads to the appearance of spatial
modulation of Rabi oscillations (Rabi waves propagation).
Calculated data indicate that Rabi waves can propagate if the
light mode wave vector has nonzero component along the

(64)

chain axis. Characteristics of the Rabi waves depend strongly
on relations between parameter of electron-photon coupling,
frequency deviation and transparency factors of potential
barriers for both of levels.

(ii) Traveling Rabi wave represent the quantum state of
QD chain dressed by radiation, i.e., entangled states of e-h
pair and photons. The qualitative distinction of these states
from the similar states of single dressed atom? is the space-
time modulation of dressing parameter according to the trav-
eling wave law. The propagation of traveling Rabi wave
looks like supported by periodically inhomogeneous nonre-
ciprocal effective media, whose refractive index is deter-
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mined by electric field distribution. This states can be treated
as a quasiparticles of a new type (it may be considered as a
generalization of Hopfield polaritons®'? for the case of in-
direct quantum transitions).

(iii) Two traveling Rabi modes with different frequencies
of Rabi oscillations exist at a given value of wave number.
The range of Rabi oscillation frequencies is limited by the
critical value, different for both of the modes. The QD chain
is opaque in the regime of Rabi oscillation frequencies below
the critical value. The critical frequencies and dispersion
characteristics of Rabi modes depend on number of photons.

(iv) Different types of Rabi wave packets are formed as
an arbitrary superpositions of four partial subpackets with
different amplitudes, frequency shifts, and velocities of mo-
tion. Two of subpackets correspond to the contribution of
excited initial state and two others caused by the ground
initial state contribution. Rabi wave packets transfer energy,
inversion, quasimomentum, electron-electron, and electron-
photon quantum correlations along the chain. The number of
subpackets can be diminished in specific circumstances.

(v) Rabi oscillations qualitatively change the electron tun-
neling picture in the QD chain. In contrast to the absence of
electron-photon coupling, the movement of initially ground-
state subpacket is governed by tunneling transparency of ex-
cited energy level and vice versa. Thus, Rabi oscillations can
stimulate the tunneling through low-energy level and sup-
press it through high-energy one.

(vi) Rabi wave packet movement along the QD chain al-
ters the light statistics. Particularly, for the QD chain, ex-
posed to coherent light, we predict the drastic modification
of the standard collapse-revival phenomenon: collapses and
revivals due to the interdot tunneling appear in different ar-
eas of space.

Rabi waves can take place in a number of other distrib-
uted systems strongly coupled with electromagnetic field.
The example is superconducting circuits based on Josephson
junctions, which are currently the most experimentally ad-
vanced solid-state qubits.!? It is evident, for example, that the
qubit-qubit capacitance coupling in the chain of qubits
placed inside a high-Q transmission-line resonator will be
responsible for the Rabi waves propagation similar to de-
scribed in this paper.

. 1.00

0.75

[
(=]

FIG. 15. (Color online) The space-time dependence of normal-
ized correlation function gV(x,0,7,0) for light in Fock state with
n=5 and the input parameters as follows: & =&=10g, A=&k’a?,
o=5a, A,(x,0)=exp(-x2/20%)/ {702, and B, ,(x,0)=0.
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APPENDIX: EVOLUTION OPERATOR

The wave function at time ¢ in terms of the wave function
at time 7=0 is given by |¥(1))=U(z,0)|¥(0)), where U(z,0)
is the evolution operator. The task of this appendix is the
calculation of the evolution operator for a discrete QD chain
exposed to quantum light. The outcome of appendix is Eq.
(59), which allows to pass from Schrodinger picture to the
Heisenberg one and would be used in the calculations of
different types of correlators. Let us for simplicity omit the
dissipation, thus, the evolution operator is unitary.

Let us introduce new variables u,,=A, e~ k7= and
Upns1 =B s 1€/ P4=002 Tt then follows from Egs. (6) and (7)
that

atup,n = ié:l(”tp—l,ne_ika/2 + up+l,neika/2) - lg n+ 1vp,n+leiAt’
(A1)
. ika/2 —ikal2
&tvp,n+l = ng(Up—IJHIel “C+ Up+1,n+le . )
—ig\n+ lup,,,e_"A’. (A2)

Coefficients in this system do not depend from QD number
p. It allows us to seek the solution in the form of traveling
Wave: Uy =ty e " Uyt 1 =V ™, and ha e[
—1r,]. Then the pairs of equations for different QDs be-

come independent of each other and may be written as

Iy, =2i& cos[(h+k/2)alu,, —ig\n+ v, ,.,e™,
(A3)
OV p 1 = 216, cos[(h—ki2)alv,, 41 — ig\n + lup,,,e_"A’.
(A4)

The initial conditions can be presented as u,,(0)
=a,e™ and v, ,,1(0)=b,, ", where a, and b, are given
numbers satisfying the normalization condition for wave
function. The system Egs. (A3) and (A4) can be easily inte-
grated, the result is given by

up,n(t) — C’ll(())ei[‘s;_n”(h)/z]t + Cg(O)ei[zSZ+Qn(h)/2]t’ (AS)

where C7,(0) are constants of integration which are deter-
mined from the initial conditions. Writing the latter in the
form u,,(0)=a,e™* and v, ,,1(0)=b,, ", we then have

u, (1) = [a,nei[b;—ﬂn(h)/z]t " Bnei[(S,}Qn(h)/Z]z]eihpa (A6)
and
Vsl (l‘) — [,ynei[rS;—Qn(h)/Z]t + 5nei[6;+0n(h)/2]t]eihpu, (A7)

where &, =¢, cos[(h+k/2)al+§&, cos[(h—k/2)a]+ A/2 and

085115-16



STRONG ELECTRON-PHOTON COUPLING IN A ONE-...

Q,(h) + A, gin+1
= byi1s A8
an 2Qn(h) a}’l + Qn(l’l) n+1 ( )

_ Qn(l’l) - Ah g\”’l + 1

= b,.1, A9
n 2Qn(/’l) a, Qn(h) n+1 ( )
_ g\n +1 Qn(h) - Ah (AIO)

=m0,
o gin+1 N Q,(h) + A, (AL1)

ST a,m T 20,0

Basis wave function has the form
|‘Ph(t)> = E 2 (up,n(t)|ap’n> + vp,n+1(t)|bp’n + 1>)
n p

(A12)

We now can represent the required wave function as Fourier
integral with basis functions W,,(¢)

PHYSICAL REVIEW B 81, 085115 (2010)

mla
(W (1)) = M(h)|[W,(1)dh,

—mla

(A13)

where M(h) is unknown weighting function. To express it let
us take into account, that

la

W)= |  Mh)ayayn)+ by |byn+1)le™dh,

np ¥ —mla

(A14)

where

la
M(h)e"dn

—mla

(a,,n|¥(0))=a, (A15)

and the same for (bp,n+1|\If(0)>. Then employing inverse
Fourier transform we have

W(0))e e

a,M(h) = %T > (agn (A16)

g=—*

and analogously for b, ;.
Substituting Eq. (A16) into Eq. (A13), we obtain Eq. (59).
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